272 research outputs found

    Large random correlations in individual mean field spin glass samples

    Full text link
    We argue that complex systems must possess long range correlations and illustrate this idea on the example of the mean field spin glass model. Defined on the complete graph, this model has no genuine concept of distance, but the long range character of correlations is translated into a broad distribution of the spin-spin correlation coefficients for almost all realizations of the random couplings. When we sample the whole phase space we find that this distribution is so broad indeed that at low temperatures it essentially becomes uniform, with all possible correlation values appearing with the same probability. The distribution of correlations inside a single phase space valley is also studied and found to be much narrower.Comment: Added a few references and a comment phras

    Divergent estimation error in portfolio optimization and in linear regression

    Full text link
    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.Comment: 5 pages, 2 figures, Statphys 23 Conference Proceedin

    The effect of social balance on social fragmentation

    Get PDF
    With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing levels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society

    Against Chaos in Temperature in Mean-Field Spin-Glass Models

    Full text link
    We study the problem of chaos in temperature in some mean-field spin-glass models by means of a replica computation over a model of coupled systems. We propose a set of solutions of the saddle point equations which are intrinsically non-chaotic and solve a general problem regarding the consistency of their structure. These solutions are relevant in the case of uncoupled systems too, therefore they imply a non-trivial overlap distribution P(qT1T2)P(q_{T1T2}) between systems at different temperatures. The existence of such solutions is checked to fifth order in an expansion near the critical temperature through highly non-trivial cancellations, while it is proved that a dangerous set of such cancellations holds exactly at all orders in the Sherrington-Kirkpatrick (SK) model. The SK model with soft-spin distribution is also considered obtaining analogous results. Previous analytical results are discussed.Comment: 20 pages, submitted to J.Phys.

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Regularizing Portfolio Optimization

    Get PDF
    The optimization of large portfolios displays an inherent instability to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification "pressure". This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade-off between the two, depending on the size of the available data set

    One-step replica symmetry breaking solution of the quadrupolar glass model

    Full text link
    We consider the quadrupolar glass model with infinite-range random interaction. Introducing a simple one-step replica symmetry breaking ansatz we investigate the para-glass continuous (discontinuous) transition which occurs below (above) a critical value of the quadrupole dimension m*. By using a mean-field approximation we study the stability of the one-step replica symmetry breaking solution and show that for m>m* there are two transitions. The thermodynamic transition is discontinuous but there is no latent heat. At a higher temperature we find the dynamical or glass transition temperature and the corresponding discontinuous jump of the order parameter.Comment: 10 pages, 3 figure

    Large Deviation Property of Free Energy in p-Body Sherrington-Kirkpatrick Model

    Full text link
    Cumulant generating function phi(n) and rate function Sigma(f) of the free energy is evaluated in p-body Sherrington-Kirkpatrick model by using the replica method with the replica number n finite. From a perturbational argument, we show that the cumulant generating function is constant in the vicinity of n = 0. On the other hand, with the help of two analytic properties of phi(n), the behavior of phi(n) is derived again. However this is also shown to be broken at a finite value of n, which gives a characteristic value in the rate function near the thermodynamic value of the free energy. Through the continuation of phi(n) as a function of n, we find out a way to derive the 1RSB solution at least in this model, which is to fix the RS solution to be a monotone increasing function.Comment: 7 pages, 5 figures. accepted for publication in J.Phs.Soc.Jp

    Chaos and Universality in a Four-Dimensional Spin Glass

    Full text link
    We present a finite size scaling analysis of Monte Carlo simulation results on a four dimensional Ising spin glass. We study chaos with both coupling and temperature perturbations, and find the same chaos exponent in each case. Chaos is investigated both at the critical temperature and below where it seems to be more efficient (larger exponent). Dimension four seems to be above the critical dimension where chaos with temperature is no more present in the critical region. Our results are consistent with the Gaussian and bimodal coupling distributions being in the same universality class.Comment: 11 pages, including 6 postscript figures. Latex with revtex macro

    Evidences Against Temperature Chaos in Mean Field and Realistic Spin Glasses

    Full text link
    We discuss temperature chaos in mean field and realistic 3D spin glasses. Our numerical simulations show no trace of a temperature chaotic behavior for the system sizes considered. We discuss the experimental and theoretical implications of these findings.Comment: 4 pages in aps format. 6 .ps figures. It is better to print the paper in colou
    • …
    corecore